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a b s t r a c t

Comparisons between the experimental and predicted sound transmission loss values

obtained from statistical energy analysis are presented for two foam-filled honeycomb

sandwich panels. Statistical energy analysis (SEA) is a modeling procedure which uses

energy flow relationships for the theoretical estimation of the sound transmission

transmission loss using SEA greatly depends on accurate estimates of: (1) the modal

density, (2) the internal loss factor, and (3) the coupling loss factor parameters of the

structures. A theoretical expression for the modal density of sandwich panels is

developed from a sixth-order governing equation. Measured modal density estimates of

the two foam-filled honeycomb sandwich panels are obtained by using a three-channel

spectral method with a spectral mass correction to allow for the mass loading of the

impedance head. The effect of mass loading of the accelerometer is corrected in the

estimations of both the total loss factor and radiation loss factor of the sandwich panels.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration and transmission of sound through structures are of concern with many mechanical systems including
aerospace and surface transportation vehicles, building structures, industrial machinery and home appliances [1–5]. Many
such structures are comprised of beam and panel like elements. The vibration of beam and panel systems can be reduced
by the use of passive damping, once the system parameters, such as the dynamic stiffness of the panels or beams, have
been identified [6–8]. Alternatively, attempts can also be made to suppress vibration, sound radiation and transmission of
sound through such structures through a thorough understanding of the vibration using approaches such as statistical
energy analysis [9]. It is necessary to identify the panel or beam system parameters no matter what methods of noise and
vibration control are chosen.

Composite sandwich structures have been increasingly used in recent years instead of metal structures for the
construction of aircraft, spacecraft and ships, because of their high stiffness-to-weight ratios, lack of corrosion and the
introduction of a viscoelastic core layer, which has high inherent internal damping. This trend is dictated by demands for
high load capacity and reduced fuel consumption for cars and trucks and aerospace structures [2,6–8]. It is important to
understand and to be able to predict the transmission of sound through such structures in order to protect the occupants in
aircraft and vehicle cabins from the noise of the powerplants. Although composite sandwich panels normally have higher
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internal damping than metal structures. This is useful in reducing resonant vibration. Unfortunately, however, they often
have poorer sound transmission properties than metal panels, since the coincidence region can extend over a much greater
frequency range than metal panels.

Statistical energy analysis (SEA) is a modeling procedure which uses energy flow relationships for the theoretical
estimation of the vibration response levels of structures in resonant motion and for the noise radiation from and the sound
transmission through these structures. The accuracy of the prediction of the response and the sound transmission loss of
structures using SEA greatly depends on an accurate estimates of (1) the modal density, (2) the internal loss factor, and (3)
the coupling loss factor parameters of the structures. A large number of researchers have studied these three parameters of
single-layer structures. Only a limited amount of work, however, has been carried out to determine these parameters for
sandwich panels.

In principle, the modal density can be obtained experimentally by exciting the structure with a sinusoidal force of
varying frequency and counting the number of modes that are excited in each frequency band. However, the mode count
method is not suitable for structures that have a high modal density and a high modal overlap or those in which heavily
damped modes are present. Because of these reasons, the point mobility method, described by Cremer et al. [10] is a more
suitable for measuring modal densities. The accuracy of this method is critically dependent on the reliable measurement of
force and velocity. Clarkson and Pope [11] employed this method to estimate the modal density of plates and cylinders, and
found that the real part of the point mobility of very lightly damped structures can be negative.

Brown [12] showed that modal density experimental estimates can be improved by using a three-channel spectral
method which minimizes the erroneous results generated by feedback noise caused by exciter-structure interaction. The
mass loading which results from the added mass that appears between the impedance head and the structure can affect
the point mobility transfer function. Brown and Norton [13] showed that the modal density measurement for cylindrical
pipes can be further improved by using a three-channel spectral method with a mass correction applied to the point
mobility measurement. Keswick and Norton [14] used two mass correction methods, the measured mass method and the
spectral mass method, to obtain the experimental modal densities of a lightly damped clamped cylindrical pipe. Their
results showed that the spectral mass method is in better agreement with theory than the measured mass method.

Clarkson and Ranky [15] derived an expression for the modal density of honeycomb sandwich panels from a reduced
form of the governing equation for sandwich structures presented by Mead and Markus [16] and they evaluated the modal
density of honeycomb panels experimentally by using a two-channel spectral method without using a mass correction.
Renji and Nair [17] developed an expression for the modal density of a symmetric sandwich panel from a fourth-order
equation which was modified from the governing equation for a symmetric laminate by including the shear flexibility of
the core. In their work, they considered both real and imaginary parts of the point mobility in the measured mass
correction.

The expressions for the modal density of honeycomb sandwich panels given by both Clarkson and Ranky [15] and Renji and
Nair [17] were developed from fourth-order governing equations, while most governing equations for symmetric honeycomb
sandwich panels are sixth-order [16,28–30]. Ferguson and Clarkson [18] presented an expression for the modal density of
honeycomb sandwich panels derived from the sixth-order equation presented by Mead and Markus [16]. However, there is an
error in their expression.

There are two direct experimental techniques for obtaining internal loss factors that are often used. These are: (1) the
half-power bandwidth method and (2) the envelope decay method. Only the internal loss factors of the non-overlapping
modes can be obtained from the half-power bandwidth method. For SEA applications, the primary property of interest is
the band-averaged loss factor, not the modal loss factor. The envelope decay method is based on determining the
logarithmic decrement of the transient structural response. This is obtained from measurements of the decay of the
vibration after the excitation is cut off. The steady-state power flow method is an indirect experimental approach to obtain
the band-averaged loss factor.

Clarkson and Pope [11] showed that the band-averaged loss factor of a cylinder, calculated from the power flow method,
is higher than that obtained from the envelope decay method. Ranky and Clarkson [19] found that there is no significant
difference between the results from the two methods when the modes in the chosen band of frequency have similar modal
loss factors. If this is not the case, the decay curve is not a straight line; then the power flow method provides the result
required for SEA calculations. Renji and Narayan [20] investigated loss factors of honeycomb sandwich panels. They
corrected their results for the effect of added mass on the driving force by using the measured mass correction method and
assumed that the mass loading of the accelerometer, which was employed to measure the spatial velocity of the panel, is
negligible.

Most experiments used to measure the loss factor of a structure have been conducted in air. In such cases, the loss factor
reported is the total loss factor, which includes the radiation loss factor. Lyon and Maidanik [21,22] developed an expression for the
radiation resistance of a baffled simply supported panel excited in a reverberant acoustic field. They also described how the
radiation loss factor of a structure in a reverberant field can be determined experimentally [22]. Crocker and Price [23] presented
an experimental method to determine the radiation loss factor of a structure clamped between two reverberation rooms.
Gomperts [24] provided an expression for the radiation efficiency of a baffled free-edge panel and Oppenheimer and Dubowsky
[25] studied the radiation efficiency of an unbaffled simply supported panel. Both of these studies were based on the results
developed by Maidanik [22]. Very little published data exist on the radiation loss factors or radiation resistances of composite
sandwich panels.
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Crocker and Price [23] presented general power flow relationship equations for a room–panel–room transmission suite.
The power flow between the two rooms was defined as the flow between non-resonant modes, when there are no modes
excited in the panel in the frequency band under consideration. Both non-resonant and resonant vibration modes were
taken into consideration. Sewell [26] derived an expression for the forced vibration transmission coefficient of a baffled
single-layer partition in a reverberant acoustic field using a classical approach. Sewell’s expression is generally valid when
the surface density of the partition is greater than 10 kg m�2.

In this study, the modal densities of a honeycomb sandwich panel and two foam-filled honeycomb sandwich panels are
computed. The experimental values of the modal density, total loss factor, and radiation resistance of the two foam-filled
honeycomb sandwich panels are presented. Finally comparisons between the experimental and predicted sound
transmission loss values obtained from statistical energy analysis are presented for the two foam-filled honeycomb
sandwich panels.

2. Theoretical expression for modal density

The modal density of structures depends on their boundary conditions and the governing equations of motion. For
simply supported panels, the modal density is associated with the constant frequency loci of the wavenumber; then

nðf Þ ¼ 2p ðp=4ÞDk2

ðp=lxÞðp=lyÞDo
¼

Ap

2

dk2

do
; (1)

where lx and ly are the dimensions of the panel and Ap the surface area of the panel.
The modal density of sandwich panels is more complicated because not only is it frequency dependent, but this

frequency dependence is not a linear function. Most governing equations for sandwich structures have been developed by
assuming that the panel elements or beam elements are one-dimensional [16,27–30]. Both anti-symmetric and symmetric
motion of the face sheets has been considered to describe the motion of sandwich panels [27–29]; only anti-symmetric
motion is normally included in the development of the governing equation for sandwich beams [16,30].

For sandwich panels with stiff cores, such as honeycomb cores, the anti-symmetric motion is dominant in the frequency
band under consideration. The governing equation for anti-symmetric motion of sandwich panels can be written as a cubic
equation with respect to k2,

k6 þ a2k4 þ a1k2 þ a0 ¼ 0: (2)

In the absence of damping, the wavenumber of free anti-symmetric transverse motion is always real. Then the propagating
wavenumber must satisfy the equation,

k2 ¼ �
a2

3
þ ðSþ TÞ; (3)

where

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffi
D
p3

q
; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

ffiffiffiffi
D
p3

q
; D ¼ Q3 þ R2;

Q ¼
3a1 � a2

2

9
; R ¼

9a2a1 � 27a0 � 2a3
2

54
:

Hence the modal density can be obtained from

dk2

do ¼ �
1

3

da2

do þ
dS

doþ
dT

do

� �� �
; (4)

with
dS

do
¼

1

3
S�2 dR

do
þ

1

2
ffiffiffiffi
D
p

dD

do

� �
;

dT

do
¼

1

3
T�2 dR

do
�

1

2
ffiffiffiffi
D
p

dD

do

� �
;

dD

do ¼ 3Q2 dQ

doþ 2R
dR

do ;
dR

do ¼
a1

6

da2

do þ
a2

6

da1

do �
1

2

da0

do �
a2

2

9

da2

do ;

dQ

do
¼

1

3

da1

do
�

2a2

9

da2

do
:

Eq. (2) is equivalent to the sixth-order governing equation for free motion of sandwich structures presented by Mead
and Markus [16], if

a2 ¼ gð1þ YÞ; a1 ¼ �
m
Dt

o2; a0 ¼ �
m
Dt

go2; (5)

with Y ¼
½hþ ðt1 þ t3Þ=2�2E1t1E3t3

DtðE1t1 þ E3t3Þ
; g ¼

Gc

h

1

E1t1
þ

1

E3t3

� �
; Dt ¼

E1t3
1 þ E3t3

3

12
;
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where Ej is the Young’s modulus of the face sheet j; Gc the out-of-plane shear modulus of the core; tj and h are the thickness
of the face sheet j and the core, respectively; and m the mass per unit area of the sandwich panel.

Clarkson and Ranky [15] treated honeycomb sandwich panels as equivalent flat plates to derive the modal density, nðf Þ,
by assuming that the bending rigidity of the face sheets, Dt , is negligible in the sixth-order equation given by Mead and
Markus,

nðf Þ ¼
pmApf

gDtð1þ YÞ
1þ

mo2 þ 2g2Dtð1þ YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmo2Þ

2
þ 4mðgoÞ2Dtð1þ YÞ

q
0
B@

1
CA: (6)

For a honeycomb core, with different out-of-plane shear moduli, Clarkson and Ranky used
ffiffiffiffiffiffiffiffiffiffiffi
GxGy

p
to make an estimation of

the shear modulus of the honeycomb core, Gc , where Gx and Gy are the out-of-plane shear moduli of the core.
Ferguson and Clarkson [18] presented an analytical expression for the modal density of a sandwich panel derived from

the governing equation given by Mead and Markus by expressing Eq. (3) in terms of radicals,

nðf Þ ¼
Ap

9
P�2=3 dP

do cos
y
3
� P1=3sin

y
3

dy
do

� �
: (7)

There is an error in their expression for the parameter P. The correct expression for P should be as follows:

P ¼ 3
ffiffiffi
3
p mo2

Dt
þ

1

3
g2ð1þ YÞ2

� �3=2

: (8)

The factor of the second term in the curly brackets of the expression for P given by Ferguson and Clarkson is 1
2, not 1

3.
Renji and Nair [17] developed a governing equation for a symmetric orthotropic laminate with an isotropic core from the

governing equation of motion for a symmetric laminate by including the shear flexibility of the core.

D11
q4w

qx4
þ 2ðD12 þ 2D66Þ

q4w

qx2qy2
þ D22

q4w

qy4
¼ �

1

N
D11

q4q

qx4
þ D22

q4q

qy4

 !
þ q; (9)

where Dij is the flexural rigidity of the sandwich structure; N the shear rigidity of the core; and q the force per unit area of
the structure.

The governing equation for the forced vibration of sandwich structures given by Mead and Markus [29], is

q6w

qx6
� gð1þ YÞ

q4w

qx4
¼

1

Dt

q2q

qx2
� gq

 !
: (10)

It is noted that by neglecting the highest partial differential term, the above equation reduces to

Dtð1þ YÞ
q4w

qx4
¼ �

1

g

q2q

qx2
þ q: (11)

Thus, Eq. (9) is a two-dimensional version of Eq. (11). For sandwich panels with isotropic materials, these two equations are
equivalent. The expression for the modal density of sandwich panels with orthotropic face sheets given by Renji and Nair
requires knowledge of the off-axis stiffness values of the face sheets to obtain the off-axis flexural rigidity values, D12 and
D66.

The modal densities of sandwich panel A, with plywood face sheets and paper honeycomb core are presented in Fig. 1.
The properties of sandwich panel A given by Moore and Lyon [29] are presented in Table 1. The equivalent out-of-plane
shear modulus Gc was chosen as the value of Gx to illustrate the effect of the bending rigidity of the face sheets Dt on the
modal density of sandwich panel A.

The critical frequency of a structure is the lowest frequency at which the phase speed of structural transverse waves is equal to
the speed of sound in the fluid. The fluid is air in most applications. The critical frequency of transverse waves in the x-axis
direction of panel A obtained from the governing equation given by Mead and Markus, occurs near to 250 Hz. It is seen that the
effect of the contribution of the bending rigidity of the face sheets Dt on the modal density of sandwich panel A is important above
2000 Hz, above the critical frequency. Eq. (6) overestimates the modal density and the approximate value can be twice that of the
modal density computed from Eqs. (4) and (5), or Eqs. (7) and (8) above 4000 Hz.

3. Experimental modal densities

The modal density of a structure can be obtained from the measurement of the spatially averaged point mobility
frequency response function. The band-averaged modal density is given by [10],

nðf Þ ¼
1

Df

Z
4MpRe½Yðf Þ� df ; (12)

where Yðf Þ ¼ Vðf Þ=Fðf Þ is the point mobility of the structure; Mp the mass of the structure, and Df the frequency analysis
bandwidth.
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Fig. 1. Modal densities of propagating transverse wave in sandwich panel A, Gc ¼ Gx: —— Eqs. (4) and (5) or Eqs. (7) and (8); � � � � � Eq. (6).

Table 1
Properties of sandwich panels A, B and C.

Property Panel A [29] Panel B Panel C

Face sheet

Density ðkgm�3
Þ 657 1600 1600

Young’s modulus Et (GPa) 7.7 49 39

Poisson’s ratio 0.3 0.15 0.15

Thickness t (mm) 6.35 0.5 0.5

Core

Density ðkgm�3
Þ 28 160 120

Thickness h (mm) 76.2 6.35 12.7

Out-of-plane shear modulus Gx (MPa) 24 90 100

Out-of-plane shear modulus Gy (MPa) 52 140 60

Poisson’s ratio 0.15 0.15 0.15

Dimensions lx � ly ðm�mÞ 1:22� 2:44 1:12� 0:62 1:12� 0:62

R. Zhou, M.J. Crocker / Journal of Sound and Vibration 329 (2010) 673–686 677
In the three-channel spectral method, the point mobility is determined by using the relation,

Yðf Þ ¼
Gsvðf Þ

Gsf ðf Þ
; (13)

where Gsvðf Þ and Gsf ðf Þ are the cross-spectra between the original input and the measured velocity, and the original input
and the measured force.

Mass corrections must be considered when making any frequency response measurements on a lightweight structure.
In the case of point mobility measurements, there will always be some added mass present between the force gauge of the
impedance head and the structure. The added mass will corrupt the force measurement because some portion of the force
measured is used to drive against the inertial resistance of the added mass.

The point mobility measurement can be corrected for the mass loading effect as follows:

Yc ¼
Vm

Fc
¼

Vm

Fm �MAm
¼

Vm=Fm

1� ioMVm=Fm
¼

Ym

1� ioMYm
; (14)

where Am and Fm are the acceleration and force measured by the impedance head; Vm and Ym are the measured velocity and
point mobility; Fc and Yc are the corrected force and point mobility; and M is the added mass between the force gauge and
the structure.

The added mass M can be evaluated by adding the manufacturer’s specifications for the mass below the force gauge to
the mass of the attachment components or by measuring the point mobility of the added mass attached to the impedance
head when it is separated from the structure. The first correction method is termed as the measured mass method. The
second correction method is termed as the spectral mass method.
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Hence, the real and imaginary components of the corrected point mobility are

ReðYcÞ ¼
ReðYmÞ

½1þoMImðYmÞ�
2 þ ½oMReðYmÞ�

2
; (15)

ImðYcÞ ¼
oMf½ImðYmÞ�

2 þ ½ReðYmÞ�
2g þ ImðYmÞ

½1þoMImðYmÞ�
2 þ ½oMReðYmÞ�

2
: (16)

In this study, the modal density of the sandwich panels studied was obtained by averaging the modal densities
measured at four randomly chosen points on the panels. The point mobility was measured at each position with a B&K
impedance head type 8000 that was attached to a B&K vibration exciter type 4809 by a stud. The impedance head was
attached to the panel with wax. The sandwich panel was suspended by strings and excited by the exciter with a broadband
random force, as shown in Fig. 2.

The measured inertance of the added mass between the force gauge and the panel was found to be between 860 and
960 ms�2 N�1 in the frequency band, 20025600 Hz. Then the effective dynamic mass of the added mass was calculated to be
between 1.06 and 1.14 g, which is slightly smaller than 1.2 g, the mass below the force gauge of the impedance head specified by
the manufacturer. The frequency spectral analysis resolution was chosen to be 1 Hz. Two frequency analysis bandwidths Df , were
chosen (1) one-third octave and (2) a constant bandwidth of 400 Hz. The first is consistent with most previous work and the
second was chosen to ensure that there are at least five resonance frequencies in each analysis band.

Two sandwich panels with plane weave fabric-reinforced graphite composite face sheets and polyurethane (PUR) foam-
filled honeycomb core, panels B and C, were investigated. Plain weave is the most stable construction used for composite
face sheets and has minimum slippage. The strength is approximately the same in the two principal directions. The
combination of PUR foam and honeycomb materials gives the core the advantage of possessing both foam and honeycomb
properties, a high shear modulus, and a large bonding area. The properties of panels B and C, are given in Table 1.

For boundary conditions, other than simply supported, analytical expressions for the eigenmodes of panels in free
vibration are not available. Higher order eigenmodes of the free vibration of panels are less sensitive to boundary
conditions than lower order eigenmodes. Thus, except for the first several eigenmodes, the modal density for simply
supported panels provides a good approximation for that of panels with other boundary conditions.

Figs. 3 and 4 show the experimental estimates of the modal density for panels B and C. It is seen that the mass loading effect of
the mass below the force gauge on the measurement of point mobility is apparent above 2000 Hz for the two foam-filled
honeycomb sandwich panels. Two lines are indicated in Figs. 3 and 4. The solid lines correspond to theoretical modal density
predictions of the two panels made using Gc ¼ Gx. The dashed lines represent theoretical modal density predictions of the two
panels made using Gc ¼ Gy. The critical frequencies of panels B and C obtained from the governing equation given by Mead and
Fig. 2. Set-up for the modal density, total loss factor and radiation resistance experiments of panels with free edges.
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Fig. 3. Band-averaged modal density estimates for sandwich panel B: ~ one-third octave bandwidth; % 400 Hz bandwidth; þ 400 Hz bandwidth without

mass correction; —— theoretical estimates by using Eq. (6) and Gc ¼ Gx; ��� theoretical estimates by using Eq. (6) and Gc ¼ Gy .

Fig. 4. Band-averaged modal density estimates for sandwich panel C: ~ one-third octave bandwidth; % 400 Hz bandwidth; þ 400 Hz bandwidth without

mass correction; —— theoretical estimates by using Eq. (6) and Gc ¼ Gx; ��� theoretical estimates by using Eq. (6) and Gc ¼ Gy .
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Markus, occur near to 1600 and 1000 Hz, respectively. In the low frequency region, the transverse motion of sandwich panels is
determined by pure bending. Since the core thickness of panel B is one half of that of panel C and the properties of the face sheets
of the two panels are similar, then the modal density of panel B is higher than that of panel C below 1000 Hz.

Theoretically higher out-of-phase shear modulus Gc yields lower modal density of the sandwich panels. The length of
the two panels along the x-axis direction, lx, is about twice of the length along the y-axis direction, ly; See Fig. 2 and Table 1.
The increment of the primary structural wave number component along the x-axis direction, Dkx, is much less than that
along the y-axis direction, Dky. The orthotropic behavior of the face sheet will increase the modal density of the sandwich
panel [17]. These explain that why the experimental modal density values of panels B and C are near and a little higher than
the theoretical predictions for Gc ¼ Gx.

It was found that the effect of the contribution of the bending rigidity of the face sheets Dt on the modal density of
sandwich panels B and C is negligible up to 6300 Hz. Eq. (6) provides accurate estimates for the two foam-filled honeycomb
sandwich panels in the frequency range of interest. The difference between the prediction of modal density from Eq. (6)
and that from Eqs. (4) and (5) is less than 0.002 up to 6300 Hz. Since the modal densities of the two panels are quite similar,
and panel B is lighter than panel C, then the real component of the point mobility of panel B is larger than that of panel C.
4. Experimental total loss factors

Unlike modal densities, theoretical expressions for internal loss factors are not available. The loss factor of a structure
can be obtained from the measurement of the force supplied to the structure and the spatially averaged square of the
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normal velocity produced. In steady-state conditions, the average power input is equal to the average power dissipated, and
thus the band-averaged loss factor is

Z ¼ 1

Df

Z
F2ðtÞReðYÞ

Mp/V2ðtÞS2pf
df ; (17)

where F and Y are the actual or corrected force and point mobility of the structure.
As discussed in the previous section, the force measurement can be mass corrected. Then

F2
c ¼

F2
m

½1�oMImðYcÞ�
2 þ ½oMReðYcÞ�

2
: (18)

where ReðYcÞ and ImðYcÞ can be determined from Eqs. (15) and (16).
In the case of the measurement of high frequency vibration of lightweight structures, considerable care should be taken

when using an accelerometer because of the mass loading effect. Well below its resonance frequency, the accelerometer
can be assumed to act as a pure mass. The velocity of the structure Vc can be assumed to be reduced to Va by the presence of
the accelerometer [31],

Va

Vc
¼

Z

Z þ ioma
; (19)

where Z is the mechanical impedance of the test element, and ma is the accelerometer mass.
In this study, the mass loading of the accelerometer was assumed to be

V2
a

V2
c

¼
1

1þ ½omaReðYcÞ�
2
; (20)

where Yc is the corrected point mobility of the panel and ma the static mass of the accelerometer.
The corrected point mobilities of the sandwich panels were determined by following the procedure that is described in

Section 3. An Endevco model 2226c piezoelectric accelerometer was attached to the panel with wax. The velocities of the
sandwich panels were determined by measuring the panel responses with the accelerometer at five randomly chosen
positions. The frequency spectral analysis resolution was chosen to be 1 Hz. The frequency analysis bandwidth of the loss
factor analysis chosen was one-third octave. The loss factor estimates for panels B and C are shown in Fig. 5.

Since the real component of the point mobility of panel B is larger than that of panel C, then it was expected that
accelerometer mass loading effects would corrupt the velocity measurements more with panel B than with panel C. It is
seen that the mass loading effect of the accelerometer on the loss factor of panel C is negligible. It becomes apparent,
however, at frequencies above 3150 Hz for panel B. The corrected loss factors of panels B and C are less than 0.03.
5. Experimental radiation loss factors

The radiation resistance of a structure, Rrad, in a reverberant field can be obtained experimentally as follows [21]:

Rrad ¼ Zroomo
/P2S

rc2/V2S
Vroom ¼

13:8Sp

TroomSvrc2
Vroom; (21)

where Sp is the sound pressure spectral density function in the reverberation room and Sv the velocity spectral density
function of the structure; Troom and Vroom are the reverberation time and the volume of the room, respectively; and r and c

are the mass density of air and the sound speed in air.
Fig. 5. Band-averaged total loss factor estimates for sandwich panels: (a) panel B and (b) panel C: ~ without mass correction of the accelerometer; %

with mass correction of the accelerometer.
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The radiation resistance of a structure mounted between two reverberation rooms and excited by a shaker can be
estimated experimentally [23],

Rrad ¼
13:8

Svrc2

Sp1

T1
V1 þ

Sp3

T3
V3

� �
: (22)

It is noted that in both radiation resistance determinations, Eqs. (21) and (22), the radiation resistance is also termed as
R4p

rad, because the effective radiating area of the panel is twice that of the area of the panel.
The radiation resistance of a baffled simply supported single-layer panel given by Maidanik [22] is, as corrected in Ref.

[23],

R2p
rad ¼ Aprc

scorner þ sedge; fofcffiffiffiffiffiffiffiffiffiffiffi
lx=lc

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
ly=lc

p
; f ¼ fc

½1� ðfc=f Þ��1=2; f4fc

8>><
>>: with

scorner ¼
ðlcla=ApÞa2ð8=p4Þ½ð1� 2a2Þ=a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

�; fofc=2

0; f4fc=2
;

(

sedge ¼
1

4p2

Plc

Ap

ð1� a2Þln½ð1þ aÞ=ð1� aÞ� þ 2a
ð1� a2Þ

3=2
;

la ¼
c

f
; lc ¼

c

fc
; a ¼

ffiffiffiffi
f

fc

s
; (23)

where fc and P are the critical frequency and the total length of the edges of the panel.
Gomperts [24] showed that the radiation efficiency of a baffled free-edge panel at frequencies well below the critical

frequency is

sbaf ; free ¼ ð2=5Þðf=fcÞ
2sbaf ;ss ¼ ð2=5Þðf=fcÞ

2
ðscorner þ sedgeÞ; f5fc: (24)

When the panel is unbaffled, fluid flow around the panel edges reduces the sound radiation. Oppenheimer and
Dubowsky [25] have provided an expression for the radiation efficiency for unbaffled simply supported panels,

sunbaf ;ss ¼ FplateðFcornerscorner þ FedgesedgeÞ; fofc; (25)

with Fcorner ¼
13a

2ð1þ 13aÞ
; Fedge ¼

49a
2ð1þ 49aÞ

; Fplate ¼
k4A2

p=ð48p2Þ

1þ k4A2
p=ð48p2Þ

;

where k is the wavenumber of sound in air.
The two foam-filled honeycomb sandwich panels were clamped sequentially between two reverberation rooms and

excited by a B&K vibration exciter type 4809 to obtain their radiation resistances. The clamping reduced the dimensions of
the panels to 0:88 m� 0:42 m. The sound pressure spectral density function in each room was determined by measuring
the room responses with a microphone at eight positions. The velocity spectral density function of the panel was
determined by measuring the panel responses with an accelerometer at eight positions. The mass loading effect of the
accelerometer was included in the radiation resistance calculation. The frequency spectral analysis resolution was chosen
to be 1 Hz. The frequency analysis bandwidth chosen was one-third octave. The measured radiation resistances of the two
clamped sandwich panels are shown in Fig. 6.

As shown in Section 3, Eq. (6) offers accurate modal density estimates for the foam-filled honeycomb sandwich panels,
then it was expected that Eq. (23) provides a good estimation of the radiation resistance of the thin sandwich panel B. The
measured radiation resistance of the thick sandwich panel C, has a maximum value above the predicted critical frequency
and this value is much smaller than the predicted value at the predicted critical frequency. This may be explained by the
fact that there are not enough resonant modes near the critical frequency because of the relative small dimensions of the
clamped panel C.

The radiation resistances of panels B and C with unbaffled free edges were also investigated. The panels were hung in a
reverberation room and excited by a B&K vibration exciter type 4809. The sound pressure and velocity spectral density
functions were obtained by following the same procedure for the baffled clamped model described early in this section. The
mass loading effect of the accelerometer was included in the radiation resistance calculation.

Fig. 7 shows the experimental radiation resistances of the two foam-filled honeycomb sandwich panels with unbaffled
free edges. The radiation resistances of the baffled free-edge panels and the unbaffled simply supported panels were
calculated by using Eqs. (24) and (25).

It is seen that the measured radiation resistances of unbaffled free-edge sandwich panels are less than the predicted
values of unbaffled simply supported single-layer panels, and slightly higher than those values for baffled free-edge single-
layer panels. The maximum value of the measured radiation resistance of the unbaffled free-edge sandwich panels was
found to occur at a frequency higher than that of the baffled clamped sandwich panels.
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The radiation loss factor is determined from the radiation resistance by

Zrad ¼
R2p

rad

oMp
: (26)

The radiation loss factor estimates for the sandwich panels B and C with baffled clamped edges and unbaffled free edges
are shown in Fig. 8. The radiation loss factors of two sandwich panels, B and C, with clamped edges are much higher than
those of the panels with free edges. The radiation loss factor for baffled clamped panel B is very high near its critical
frequency. It is more than 0.02 in this region. The baffled clamped panel C has similar radiation loss factor values in the
frequency band 31522000 Hz.
Fig. 6. Band-averaged radiation resistances for baffled clamped sandwich panels: (a) panel B and (b) panel C: % measured values with mass correction;

—— one-third octave band-averaged theoretical estimates from Eq. (23).

Fig. 7. Band-averaged radiation resistances for unbaffled free-edge sandwich panels: (a) panel B and (b) panel C: % measured values with mass

correction; —— one-third octave band-averaged estimates for unbaffled simply supported panels from Eq. (25); � � � � � � one-third octave band-averaged

estimates for baffled free-edge panels from Eq. (24).

Fig. 8. Band-averaged radiation loss factor estimates for sandwich panels: (a) panel B and (b) panel C: ~ with baffled clamped edges; % with unbaffled

free edges.



ARTICLE IN PRESS

R. Zhou, M.J. Crocker / Journal of Sound and Vibration 329 (2010) 673–686 683
6. Experimental internal loss factors

In the presence of a fluid medium, such as air, the experimental loss factor of a structure obtained from energy methods,
is the sum of three forms of damping [32],

Z ¼ Zint þ Zrad þ Zj; (27)

where Zint is the internal loss factor; Zrad the radiation loss factor; and Zj the loss factor associated with energy dissipation
at the boundaries of the structural element.

The internal loss factor estimates for the two panels, B and C, were obtained by neglecting Zj, and are shown in Fig. 9.
Since the total loss factor is for the unbaffled free-edge panel, Zrad is used for the radiation loss factor of the unbaffled free-
edge panel in the computation of the internal loss factor. The internal loss factors of panels B and C are similar, and are less
than 0.03 for the frequency band 20024000 Hz.
7. Sound transmission loss of sandwich panels

The sound transmission loss measurements made on two sandwich panels were carried out in the Sound and Vibration
Laboratory at Auburn University. The transmission suite consists of two adjacent 51:2 m3 reverberation rooms. Each room
has two walls made of wood with fiberglass filled in between them. The rooms are separated from each other by fiberglass,
and are mounted on air bags. The panels were clamped in a frame between the two rooms. The panel edge conditions were
intended to be fully fixed. The frame reduced the test dimensions of the panels to 0:84 m� 0:42 m. The sound transmission
loss was measured according to the standard test method, ASTM E90-99. One-third octave bands of white noise were made
in the source room with two loudspeakers and the sound pressure levels were measured at eight positions in each room.
The mean square sound pressures in each room were averaged to provide the space-averaged values required.

The sound transmission loss for the two-room method is

TL ¼ 10 log10

/p2
1S

/p2
3S

Ap

tAp þ S3a3
¼ 10 log10

/p2
1S

/p2
3S
� 1

 !
Ap

S3a3

" #
; (28)

where /p2
1S and /p2

3S are the space-averaged mean square sound pressures in the source room and receiving room,
respectively; S3 the total surface area of the receiving room and a3 the average absorption coefficient in the receiving room;
and t the sound transmission loss coefficient.

Eq. (28) can be written as

TL ¼ L1 � L3 þ 10 log10

ApT

0:161V3
with T ¼

0:161V3

tAp þ S3a3
; (29)

where L1 and L3 are the space-averaged sound pressure levels measured in the two rooms; and T the reverberation time of
the receiving room when a panel is clamped between the two rooms.

The power flow balance equations for the room-panel-room transmission suite, as illustrated in Fig. 10, can be written in
matrix form [23],
Fig. 9. Internal loss factor estimates for panels B and C: ~ panel B; % panel C.
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Fig. 10. The transmission suite.
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oA

E1=n1

E2=n2

E3=n3

8><
>:

9>=
>; ¼

Pin1

0

0

8><
>:

9>=
>;; (30)

with A ¼

ðZ1 þ Z12 þ Z13Þn1 �Z12n1 �Z13n1

�Z21n2 ðZ2 þ Z21 þ Z23Þn2 �Z23n2

�Z13n1 �Z23n2 Z3n3 þ Z13n1 þ Z23n2

2
64

3
75:

Then the modal energy ratio is

E1=n1

E3=n3
¼ 1þ

2Zradn2Z3n3 þ ðZ3n3 þ Zradn2ÞZ2n2

Z2
radn2

2 þ Z13ð2Zrad þ Z2Þn1n2
; (31)

with Z21 ¼ Z23 ¼ Zrad.
Since the mean square sound pressure ratio is equivalent to the sound energy density ratio between the two

reverberation rooms, then the sound transmission loss for the SEA model of a transmission suite is

TL ¼ 10 log10

ApT3

0:161V3

E1=V1

E3=V3
� 1

� �� �
; with T3 ¼

0:161V3

S3a3
; (32)

where T3 is the reverberation time of the receiving room.
The parameters used in the SEA calculation were evaluated both experimentally and theoretically in the calculations of

the sound transmission loss for the two sandwich panels. The internal loss factor of the receiving room, Z3, was determined
from the reverberation time of the receiving room:

Z3 ¼
2:2

fT3
: (33)

The reverberation time of the receiving room was obtained by averaging the reverberation times at eight randomly chosen
positions. The modal densities of the two reverberation rooms, n1 and n3, were obtained from the following equation:

nðf Þ ¼
4pf 2V

c3
þ
pfS

2c2
þ

P

8c
; (34)

where V is the volume of the room; S the total surface area; and P the total length of the edges. The values of the radiation
loss factor, Zrad, used were determined from Eq. (23). The values of the coupling loss factor, Z13, were determined from the
field incidence mass law transmission coefficient. Based on the experimental modal density estimates, Fig. 3, the values of
modal density, n2, of panel B used were the modal density for simply supported conditions and were derived from Eqs. (4)
and (5) with Gc ¼ Gx. Similarly, based on Fig. 4, the values of modal density, n2, of panel C used were the modal density for
simply supported conditions and were derived from Eqs. (4) and (5) with Gc ¼ Gy. The sound transmission loss estimates of
the panels were generated for two different values of internal loss factor of the panels, Z2 ¼ 0:01;0:03. The sound
transmission loss values of panels B and C are shown in Figs. 11 and 12.

The first resonance frequencies of panels B and C are in the one-third octave bands with center frequencies of 250 and
315 Hz, respectively. The experimental transmission loss curve for panel B is near the field incidence mass law curve at
frequencies well below the critical frequency, while that of panel C is significantly lower than the field incidence mass law
curve and is strongly influenced by its resonant modes. Below their first resonance frequencies, the two panels are in their
stiffness controlled regions. The coincidence dips of the two panels are not as apparent as those of metal panels and they do
not return rapidly towards the mass law curves as the frequency increases above the critical frequency. The experimental
transmission loss values are about 15 dB lower from the field incidence mass law curves. The SEA estimates for both panels
are in good agreement with the experimental results well above the critical frequency. SEA also provides reasonable
predictions for the sound transmission loss of panel B below its critical frequency. The discrepancy above the first
resonance frequency and below the critical frequency for panel C is thought to be caused by insufficient panel modes in
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Fig. 11. Sound transmission loss values of panel B: % measured values; —— Z2 ¼ 0:01; � � � � � � Z2 ¼ 0:03; ��� Z2 ¼ 0:03 with the measured values of

Zrad; � � � � � field incidence mass law.

Fig. 12. Sound transmission loss values of panel C: % measured values; —— Z2 ¼ 0:01; � � � � � � Z2 ¼ 0:03; ��� Z2 ¼ 0:03 with the measured values of

Zrad; � � � � � field incidence mass law.
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one-third octave bands. It is seen that the SEA sound transmission loss estimates are more sensitive to the radiation loss
factor than the internal loss factor of the panels near to the critical frequency. The disagreements near to the critical
frequency are reduced when the measured values of the radiation loss factor Zrad near to the critical frequency are used in
the calculation.
8. Conclusions

Comparisons between the experimental and predicted sound transmission loss values obtained from statistical energy
analysis have been made and presented for two foam-filled honeycomb sandwich panels. The predicted and experimental
transmission loss values of the sandwich panels are in better agreement when the measured radiation loss factor values are
used near to the critical frequency instead of the theoretical values for single-layer panels.

A closed-form expression for the modal densities of sandwich panels developed from a typical sixth-order governing
equation for sandwich panels with stiff cores has been presented. It was found that in high frequency range, the modal
density derived from this closed-form expression can be as little as one half of the approximate modal density that is
obtained from a fourth-order governing equation for a traditional honeycomb sandwich panel.

The radiation loss factors of clamped sandwich panels are large near to the critical frequency, especially for thin
sandwich panels; while the radiation loss factors of unbaffled free-edge sandwich panels are much smaller than those of
baffled clamped sandwich panels. The internal loss factors are dominant in the total loss factor estimates for the unbaffled
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free-edge sandwich panels studied. The expression for the radiation resistance of sandwich panels is a subject that requires
further study.
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